Abstract

The rate of hexavalent chromium reduction by soil humic substances (SHSs) was investigated in aqueous solutions where the temperature, ionic strength, background electrolyte, [Fe(III)], and [Cr(III)] were independently varied. Rate experiments were conducted with an excess of SHS over Cr(VI). An Arrenhius plot for the reduction of Cr(VI) by a soil fulvic acid and a soil humic acid indicates that the activation enthalpies for oxidation of these substances are nearly the same (63 ± 1 and 61 ± 3 kJ mol-1, respectively) and the activation entropies are significantly different (−160 ± 5 and −203 ± 9 J mol-1 K-1, respectively). Rates of reduction are not significantly altered due to changes in either background electrolyte or ionic strength. The presence of Cr(III) slightly inhibits the rate of reduction by soil humic acid, but not that of soil fulvic acid. Ferric iron increases the rate of Cr(VI) reduction, even when only a small amount of Fe(III) is added to the system. Fe may enhance the reduction of Cr(VI) by being alternately reduced by the SHS and then oxidized by the Cr(VI) as part of a redox cycle. The reduction of FeCrO4+ complexes via a parallel reaction pathway may also enhance Cr(VI) reduction in the Cr−Fe−SHS system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call