Abstract

The effect of temperature gradient on space charge behavior is necessary to investigate for HVDC insulation. In this paper, space charge distributions in neat epoxy resin (EP) and EP/SiO 2 nanocomposites (NC) were measured under different DC stresses and temperature gradients. We found that different temperature conditions applied to the electrodes had a great impact on space charge distributions: Only homocharge accumulated near anode at isothermal conditions, on the contrast, at temperature gradient of 60 °C, negative charge injected from cathode (high temperature side) and accumulated in the bulk, heterocharge appeared near anode (low temperature side). Moreover, SiO 2 nano-fillers added to NC could suppress the space charge accumulation significantly, and the pattern of space charge distribution in NC at temperature gradient of 60 °C also shows differently from that of EP. Numerical simulation based on the bipolar charge transport model was employed to study the experimental results. It shows that under temperature gradient, charge extraction plays an important role in heterocharge accumulation near the low temperature side. Moreover, it indicates that unlike the apparently measured conductivity, the charge mobility of NC does not increase rapidly with temperature in the range from 20 °C to 80 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.