Abstract

The recently introduced multisite tensor network path integral (MS-TNPI) method [Bose and Walters, J. Chem. Phys., 2022, 156, 24101] for simulating quantum dynamics of extended systems has been shown to be effective in studying one-dimensional systems coupled with local baths. Quantum transport in these systems is typically studied at a constant temperature. However, temperature seems to be a very obvious parameter that can be spatially changed to control this transport. Here, MS-TNPI is used to study the "non-equilibrium" effects of an externally imposed temperature profile on the excitonic transport in one-dimensional Frenkel chains coupled with local vibrations. We show that in addition to being important for incorporating heating effects of excitation by lasers, temperature can also be an interesting parameter for quantum control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.