Abstract
The study constructed a model of temperature fluctuation (TF, −20 °C ∼ -10 °C) during frozen status to build a link between the tilapia fillets muscle of ice crystal morphology, moisture distribution, protein oxidation index and the edible quality. When TF treatment more than 3 times, the brightness, color and hardness of frozen tilapia fillets decreased significantly, and the cooking loss and thawing loss increased significantly. The free and unconjugated water in frozen fish fillets exceeded 97 % and did not change much after 9 times TF. The K and TVB-N values were within the safety standards (K < 60 %, TVB-N < 30 mg N/100 g). The ice crystals in the tissues were significantly increased. Protein carbonyls and Ca2+-ATPase were significantly reduced, and secondary structures were irregular. Network correlation analysis showed that ice crystal morphology was significantly correlated with the color, texture and protein oxidation index of frozen tilapia fillets. The results would provide theoretical approach for the transportation and sales of tilapia industrial enterprises.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.