Abstract

Disinfection byproduct (DBP) concentrations in drinking water distribution systems and indoor water uses depend on competitive formation and degradation reactions. This study investigated the dehalogenation kinetics of total organic chlorine (TOCl), bromine (TOBr) and iodine (TOI) produced by fulvic acid under different pH and temperature conditions, and total organic halogen (TOX) variations in a treated drinking water under simulated distribution system and heating scenarios. TOX dehalogenation rates were generally in the order of TOI ≅ TOCl(NH2Cl) > TOBr > TOCl(Cl2). The half-lives of different groups of TOX compounds formed by fulvic acid varied between 27 and 139 days during incubation at 20 °C and 0.98–2.17 days during heating at 55 °C. Base-catalyzed reactions played a major role in TOX degradation as evidenced by enhanced dehalogenation under high pH conditions. The results of heating of a treated water in the presence of residuals showed that TOX concentrations of chlorinated samples increased rapidly when chlorine residuals were present and then gradually decreased after chlorine residuals were exhausted. The final TOX concentrations of chlorinated samples after heating showed moderate decreases with increasing ambient water ages. Chloraminated samples with different ambient water ages exhibited similar final TOX concentrations during simulated distribution system and heating experiments. This study reinforces the importance of understanding DBP variations in indoor water uses as wells as in distribution systems to provide more accurate DBP information for exposure assessment and regulatory determination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.