Abstract

Meiotic recombination is a fundamental biological process that facilitates meiotic division and promotes genetic diversity. Recombination is phenotypically plastic and affected by both intrinsic and extrinsic factors. The effect of maternal age on recombination rates has been characterized in a wide range of species, but the effect’s direction remains inconclusive. Additionally, the characterization of temperature effects on recombination has been limited to model organisms. Here we seek to comprehensively determine the impact of genetic and environmental factors on recombination rate in dairy cattle. Using a large cattle pedigree, we identified maternal recombination events within 305,545 three-generation families. By comparing recombination rate between parents of different ages, we found a quadratic trend between maternal age and recombination rate in cattle. In contrast to either an increasing or decreasing trend in humans, cattle recombination rate decreased with maternal age until 65 months and then increased afterward. Combining recombination data with temperature information from public databases, we found a positive correlation between environmental temperature during fetal development of offspring and recombination rate in female parents. Finally, we fitted a full recombination rate model on all related factors, including genetics, maternal age, and environmental temperatures. Based on the final model, we confirmed the effect of maternal age and environmental temperature during fetal development of offspring on recombination rate with an estimated heritability of 10% (SE = 0.03) in cattle. Collectively, we characterized the maternal age and temperature effects on recombination rate and suggested the adaptation of meiotic recombination to environmental stimuli in cattle. Our results provided first-hand information regarding the plastic nature of meiotic recombination in a mammalian species.

Highlights

  • Meiotic recombination is an essential process that occurs in all sexually reproducing organisms

  • Using a method developed in our previous studies (Ma et al, 2015; Wang et al, 2016), we identified recombination events by constructing three-generation families from a large cattle pedigree that included an offspring, parents, and grandparents

  • Farm location and temperature information were available for 36,999 parents, which were included in the temperature effect analysis

Read more

Summary

Introduction

Meiotic recombination is an essential process that occurs in all sexually reproducing organisms. This process facilitates the pairing and alignment of homologous chromosomes during prophase, which leads to the formation of crossovers. These crossover events transfer genetic information between the maternal and paternal homologs, and in doing so, ensures that each offspring will. It has been found that various factors influence meiotic recombination patterns in human and animal genomes. Some of the genes from those studies, including RNF212, CPLX1, and PRDM9, have been reported to be associated with individual-level recombination rates across multiple mammalian species

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.