Abstract

AbstractHelium plasma can be used to deliver low‐energy (<100 eV) helium ions to stimulate the growth of nanostructures on silicon surfaces. This can produce a wide range of surface features including nanoscale roughening, nanowires and porous structures. In this study, nanostructure sizes varied from ∼10 to over 100 nm in diameter. The effect of these structures on surface reflectivity for photovoltaic and photocatalytic applications is also investigated. Broadband suppression of photoreflectivity is achieved across the 300–1,200 nm wavelength range studied for silicon exposed to helium plasma at 600°C, with an average reflectivity of 3.2% and 2.9% for incident helium ion energies of 42 and 62 eV, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.