Abstract

To investigate the effects of temperature and hydration on the dynamics of purple membrane (PM), we measured the broadband complex dielectric spectra from 0.5 GHz to 2.3 THz using a vector network analyzer and terahertz time-domain spectroscopy from 233 to 293 K. In the lower temperature region down to 83 K, the complex dielectric spectra in the THz region were also obtained. The complex dielectric spectra were analyzed through curve fitting using several model functions. We found that the hydrated states of one relaxational mode, which was assigned as the coupled motion of water molecules with the PM surface, began to overlap with the THz region at approximately 230 K. On the other hand, the relaxational mode was not observed for the dehydrated state. On the basis of this result, we conclude that the protein-dynamical-transition-like behavior in the THz region is due to the onset of the overlap of the relaxational mode with the THz region. Temperature hysteresis was observed in the dielectric spectrum at 263 K when the hydration level was high. It is suggested that the hydration water behaves similarly to supercooled liquid at that temperature. The third hydration layer may be partly formed to observe such a phenomenon. We also found that the relaxation time is slower than that of a globular protein, lysozyme, and the microscopic environment in the vicinity of the PM surface is suggested to be more heterogeneous than lysozyme. It is proposed that the spectral overlap of the relaxational mode and the low-frequency vibrational mode is necessary for the large conformational change of protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.