Abstract

The developmental biology of Trichogrammatoidea lutea Girault (Hymenoptera: Trichogrammatidae) was studied at six constant temperatures (18, 21, 24, 27, 30 and 35°C) on eggs of three lepidopteran host species: Helicoverpa armigera (Hübner) (Noctuidae), Chilo partellus (Swinhoe) (Crambidae) and Cadra cautella (Walker) (Pyralidae). T. lutea did not complete development at 35°C on any of the three host species. Parasitism levels were highest on H. armigera at 27°C (58%), C. cautella at 27 and 30°C (31% and 28%) and C. partellus between 24 and 30°C (13–17%). Realized progeny of T. lutea per parasitized host egg was influenced by host size. The number of progeny of T. lutea per parasitized host egg was highest on H. armigera, followed by C. partellus and lowest on C. cautella. The sex ratio was female biased on C. partellus, female biased on C. cautella with the exception of 21°C and close to 1:1 on H. armigera. The rate of development from egg to pupa and egg to adult was fastest on H. armigera and slowest on C. partellus. Lower thresholds for development and degree days (DD) of T. lutea from egg to adult were 12.8°C and 105.4DD on H. armigera, 11.3°C and 141.6DD on C. partellus and 12.9°C and 118.2DD on C. cautella, respectively. Based on these results, H. armigera is the most suitable host for mass rearing of T. lutea for biological control of Lepidoptera pests because of the relatively high parasitism levels, short development time, greater clutch size and balanced sex ratio. C. cautella may also be used although longer exposure times might be required due to lower parasitism levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call