Abstract

<div>The viscoelastic response of pure Al and commercial 6082 and 6082-T6 (Al–Mg–Si) alloys is measured with dynamic–mechanical analyzer as a function of temperature (ranging from 35 to 425°C) and loading frequency (ranging from 0.01 to 100 Hz). The measured data (the storage modulus, loss modulus, and mechanical damping) are compared to available transmission electron microscopy and differential scanning calorimetry data, to ascertain whether unexplained variations of the viscoelastic behavior of the alloys can be correlated to phase transformations. The results suggest that some of these variations may be controlled by the formation and dissolution of metastable phases, such as Guinier–Preston (GP) zones and phases β″, β′, and B′. Indeed, GP zones and phase β″ have been reported to control other mechanical properties. However, due to the high complexity of the aging path of Al–Mg–Si alloys, with formation and dissolution reactions of many precipitate types overlapping along wide temperature intervals, further research is necessary to establish unequivocally the contribution of each individual phase transformation to the overall viscoelastic behavior. Finally, an internal friction peak related to grain boundary sliding is significantly smaller in the alloys compared to pure Al, probably because the precipitates pin the grain boundaries.</div>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.