Abstract

In this work, the effect of temperature and crystallinity on the thermal conductivity was investigated in a series of polyethylenes (PEs) with different crystallinities including high-density polyethylene (HDPE), medium-density polyethylene (MDPE), linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE). It was found that the applied ambient temperature has a significant effect on the thermal conductivity. At −20~100 °C, the thermal conductivity of PE showed a linearly decline with the increase of temperature. The thermal properties of a series of PE samples were also investigated by differential scanning calorimeter. The results showed that the higher the crystallinity, the higher the thermal conductivity of polyethylene. However, above the melting point, thermal conductivity of all PE samples tended to be the same, with a value of about 0.21 W/m·K. Based on the crystallinity and temperature, an empirical formula was proposed to predict the thermal conductivity of PEs with an error within 3%, which was also consistent with the results of other reported thermal conductivity of PEs. This work can guide the design of thermally conductive polymers in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call