Abstract

The relatively high electrical resistivity of diamond-like carbon (DLC) film is one of the main drawbacks when applied in electronic device. In this study, DLC films were synthesized on 304 stainless steels by high power impulse magnetron sputtering (HiPIMS) process and the effect of deposition temperature and bias voltage on the microstructure, electrical and electrochemical properties, hardness and adhesion strength of the DLC films were investigated. The sp2/sp3 ratio of DLC films first decreased then increased and the surface became denser as bias voltage increasing from 0 to −400 V. While the film turned into graphite-like structure and became incompact when deposition temperature rose from 100 °C to 300 °C. The interfacial contact resistance (ICR) got reduced by increasing bias voltage and deposition temperature. However, as the deposition temperature increased to 300 °C the anticorrosion ability and hardness of DLC films deteriorated. The DLC films deposited at 300 °C presented soft and had better adhesion strength than hard DLC films deposited at 100 °C. DLC films deposited at −400 V bias and 300 °C had the lowest ICR while DLC films deposited at −400 V bias and 100 °C had the best performance when ICR, corrosion resistance and hardness were all taken into consideration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.