Abstract

Purpose This paper aims to study the possibility of electroplating copper coatings on chemically and chemical-galvanically nickel-plated acrylic fibers, to be further processed into yarn, fabrics, knitwear and nonwoven materials. Design/methodology/approach Electrically conductive fibers with different copper contents have been obtained, and the effect of electrolyte pH, its composition, current strength at the first and second cathodes, as well as the metallization time on the electrophysical, physical and mechanical properties of copper-containing fibers, has been studied. Findings The studies have shown that with an increase in the copper content, the electrical conductivity, the uniformity of the coating and the uniformity of the electrophysical properties (for chemical-galvanically nickel-plated fiber) increase. In the case of copper plating of chemically nickel-plated fiber, the coefficient of variation in electrical resistance increases with increasing plating time, even though the copper content increases, and the coefficient of variation in copper content and electrical resistance decreases. The physical and mechanical properties of copper-containing fibers differ slightly from the original (subjected to copper plating) and industrial Nitron fibers. With copper plating, the strength of the fiber practically does not decrease, and the elongation decreases somewhat, compared with the mass-produced Nitron fiber. Originality/value The physical and mechanical properties of copper-containing fibers are quite high, which makes it possible to be successfully further processed into yarn, fabrics, knitwear and nonwoven materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call