Abstract
Si/SiC composite ceramics was produced by reaction sintering method in process of molten silicon infiltration into porous C/SiC preform fabricated by powder injection molding followed by impregnation with phenolic resin and carbonization. To optimize the ceramics densification process, effect of slurry composition, debinding conditions and the key parameters of all technological stages on the Si/SiC composite characteristics was studied. At the stage of molding the value of solid loading 87.5% was achieved using bimodal SiC powder and paraffin-based binder. It was found that the optimal conditions of fast thermal debinding correspond to the heating rate of 10 °C/min in air. The porous C/SiC ceramic preform carbonized at 1200 °C contained 4% of pyrolytic carbon and ∼25% of open pores. The bulk density of Si/SiC ceramics reached 3.04 g/cm3, silicon carbide content was 83–85 wt.% and residual porosity did not exceed 2%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.