Abstract

College students often find general chemistry to be a very challenging rite of passage on their way to degrees in various science, technology, and mathematics disciplines. As teachers, we make efforts to simultaneously patch gaps in students' prior knowledge and instill valuable learning strategies and sound study habits. In this paper, we describe effective metacognitive learning strategies for students in general chemistry courses. Many students experience difficulty because they are focused on memorizing facts and formulas instead of understanding concepts and developing problem-solving skills. However, students can be successful if they are taught how to shift their efforts from low-level to higher-order thinking. We present outcomes from a 50 min lecture on learning strategies presented to a population of nearly 700 science major first-year students after the first examination. The average final grade for the students who attended the lecture was a full letter grade higher than that of those who were absent, while the performance on the first examination was not statistically significantly different for the two groups. Student survey response data indicated that the students who attended the lecture changed their behavior as a result of gaining new information about learning. Statistical analysis of the results was performed using the ANCOVA approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.