Abstract
The present study was conducted to investigate the effect of tea saponins (TS) on ruminal fermentation in vitro using gas syringes as incubators. The TS were added at levels of 0, 2, 4, 6 and 8 mg against 200 mg mixture of corn meal and grass meal (1/1, w/w) in rumen fluid. In vitro gas production (GP) was recorded and methane concentration was determined at 3, 6, 9, 12 and 24 h incubation. After 24 h, the incubation was stopped and the inoculants were determined for pH, ammonia-N, volatile fatty acids (VFAs), protozoa counts and microbial protein yield. The GP was increased with the increasing level of TS except 8 mg at 24 h, which kept little change from that of the control. Methane concentration was decreased at all levels of TS at each incubation time. At 24 h incubation, inclusion with 2, 4, 6 and 8 mg of TS decreased methane concentration by 13, 22, 25 and 26%, respectively. The pH of ruminal fluid was slightly lower at 4 and 6 mg TS, but all values were in the normal range. Ammonia-N concentrations decreased significantly ( P < 0.01) when the TS were included. Concentrations of individual and total VFAs were not significantly effected by TS addition. The TS significantly inhibited the protozoa growth in ruminal fluid ( P < 0.01). At 24 h incubation, protozoa counts were reduced by 19, 25, 45 and 79%, respectively at levels of 2, 4, 6 and 8 mg of TS compared to that in control. The microbial protein was enhanced with the TS addition except 2 mg level, and reached 1.92, 2.36 and 2.61 mg/mL with addition of 4, 6 and 8 mg TS, compared to 1.50 mg/mL in control. It is suggested that TS could modify the rumen fermentation and inhibit the release of methane and ammonia, which may be beneficial for improving nutrient utilization and animal growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Animal Feed Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.