Abstract

Examination of the molecular mechanism of taurine regulation of lipid metabolism in fish is limited. In this study, an oleic acid (OA)-induced hepatocyte steatosis model of orange-spotted grouper (Epinephelus coioides) was established for the first time. The model was used to test the effect of taurine on steatosis hepatocytes in Control, High-fat (0.4 mM OA) and Taurine (0.4 mM OA + 2 mM taurine) experimental groups of fish. Hepatocyte samples were subjected to transcriptome analysis. A total of 99634 unigenes was assembled, 69982 unigenes were annotated and 1831 differentially expressed genes (DEGs) in Control vs High-fat group, and 526 DEGs in the High-fat vs Taurine group were identified, of which 824 DEGs (Control vs High-fat) and 237 DEGs (High-fat vs Taurine) were observed to be upregulated, and 1007 DEGs (Control vs High-fat) and 289 DEGs (High-fat vs Taurine) were downregulated after taurine intervention. These genes are involved in peroxisome proliferator-activated receptor (PPAR) and 5? AMP-activated protein kinase (AMPK) signaling pathways, fatty acid elongation, primary bile acid biosynthesis, glycerophospholipid and glycerolipid metabolism. The findings provide new clues in understanding the regulatory role of taurine in lipid and fatty acid metabolism of fish. It is hoped that the obtained results will help in the design of feed formulations to improve grouper growth from the perspective of aquaculture nutrition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.