Abstract

This study was carried out to investigate the effect of supplementing culture medium with different concentrations of taurine and melatonin, on buffalo oocyte in vitro meiotic maturation and embryo development. In experiment 1, oocytes were matured in vitro and the cleaved embryos were cultured in the same following seven culture medium; (i) control (TCM 199 + 10% SS); (ii) control + 0.5 mM taurine; (iii) control + 1 mM taurine; (iv) control + 3 mM taurine; (v) control + 5 microM melatonin; (vi) control + 10 microM melatonin and (vii) control + 50 microM melatonin. In experiment 2, based on the results of experiment 1, to examine the synergistic effect of antioxidants, the oocytes were matured in culture medium (TCM199 + 10% SS), supplemented with both taurine at 1 mM and melatonin at 10 microM concentration and the cleaved embryos were cultured in the same medium. Supplementation of taurine at 1 mM concentration in the culture medium resulted in a higher (p < 0.05) transferable embryo (TE) yield when compared with control (20.6% vs 14.1%). Supplementation of melatonin at 10 and 50 microM concentration in the culture medium resulted in a higher (p < 0.05) meiotic maturation rate (90.3% and 88.8% respectively) and TE yield (28.4% and 27.2% respectively), than the other treatments. In experiment 2, the TE yield did not improve by supplementing the culture medium with both taurine and melatonin, when compared with melatonin alone. In conclusion, the results of this study demonstrated that, enriching the culture medium with taurine and melatonin, improves in vitro embryo production efficiency in buffaloes. In particular, a high TE yield was obtained by enriching the culture medium with 10 microM melatonin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.