Abstract

The effect of tartaric acid on the electrochemical behavior of K3[Fe(CN)6] was investigated on bare ITO electrodes, electrodes coated with multi-walled carbon nanotubes possessing carboxyl groups (MWNT-COOHs), and electrodes coated with cyclodextrin modified multi-walled carbon nanotubes (MWNT-CDs), respectively. It is found that the molecular chirality of tartaric acid can hardly influence the electrochemical behavior of K3[Fe(CN)6] on bare ITO electrodes. When the electrodes coated with MWNT-COOHs are used, the effect of the molecular chirality becomes distinguish. In the case of the electrodes coated with MWNT-CDs, the enhanced chiral discrimination between D-tartaric acid (D-TA) and L-tartaric acid (L-TA) can be observed. The control step in the electrochemical reaction of K3[Fe(CN)6] on the electrodes coated with MWNT-CDs is deduced to be different when D-TA or L-TA is introduced into the solution, respectively. Therefore, the enhanced chiral discrimination on the electrodes coated with MWNT-CDs is probably due to the change of the control step in the electrochemical reaction of K3[Fe(CN)6] caused by the chiral recognition of cyclodextrin moieties to D-TA and L-TA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.