Abstract

The effect of tapering following a period of high-volume sprint interval training (SIT) and a basic volume of aerobic training on performance and muscle adaptations in moderately trained runners was examined. Eleven (8 men, 3 women) runners [maximum oxygen uptake (V̇o2max): 56.8 ± 2.9 ml·min-1·kg-1; mean ± SD] conducted high-volume SIT (HV; 20 SIT sessions; 8-12 × 30 s all-out) for 40 days followed by 18 days of tapering (TAP; 4 SIT sessions; 4 × 30 s all-out). Before and after HV as well as midway through and at the end of TAP, the subjects completed a 10-km running test and a repeated running test at 90% of vV̇o2max to exhaustion (RRT). In addition, a biopsy from the vastus lateralis muscle was obtained at rest. Performance during RRT was better ( P < 0.01) at the end of TAP than before HV (6.8 ± 0.5 vs. 5.6 ± 0.5 min; means ± SE), and 10-km performance was 2.7% better ( P < 0.05) midway through (40.7 ± 0.7 min) and at the end of (40.7 ± 0.6 min) TAP than after HV (41.8 ± 0.9 min). The expression of muscle Na+-K+-ATPase (NKA)α1, NKAβ1, phospholemman (FXYD1), and sarcoplasmic reticulum calcium transport ATPase (SERCA1) increased ( P < 0.05) during HV and remained higher during TAP. In addition, oxygen uptake at 60% of vV̇o2max was lower ( P < 0.05) at the end of TAP than before and after HV. Thus short-duration exercise capacity and running economy were better than before the HV period together with higher expression of muscle proteins related to Na+/K+ transport and Ca2+ reuptake, while 10-km performance was not significantly improved by the combination of HV and tapering. NEW & NOTEWORTHY Short-duration performance became better after 18 days of tapering from ~6 wk of high-volume sprint interval training (SIT), whereas 10-km performance was not significantly affected by the combination of high-volume SIT and tapering. Higher expression of muscle NKAα1, NKAβ1, FXYD1, and SERCA1 may reflect faster Na+/K+ transport and Ca2+ reuptake that could explain the better short-duration performance. These results suggest that the type of competition should determine the duration of tapering to optimize performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call