Abstract

To get stable perpendicularly magnetized tunnel junctions at small device dimensions, composite free layers that comprise two MgO/FeCoB interfaces as sources of interface anisotropy are generally used. Proper cristallisation and annealing robustness is typically ensured by the insertion of a spacer layer of the early transition metal series within the FeCoB layer. We study the influence of the spacer thickness and growth condition on the switching metrics of tunnel junctions thermally annealed at 400$^\circ$C for the case of 1-4 \r{A} Ta spacers. Thick Ta spacer results in a large anisotropies indicative of a better defined top FeCoB/MgO interface, but this is achieved at the systematic expense of a stronger damping. For the best anisotropy-damping compromise, junctions of diameter 22 nm can still be stable and spin-torque switched. Coercivity and inhomogeneous linewidth broadening, likely arising from roughness at the FeCoB/Ta interface, can be reduced if a sacrificial Mg layer is inserted before the Ta spacer deposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call