Abstract
In gymnastics, the final landing position represents a key determinant of safety and exercise quality. Previous findings on the biomechanics of landing indicated that knee flexion correlates strongly with ground reaction forces. However, it remains unclear how this relationship is affected by landing training. We conducted a randomized controlled study to assess the effect of systematic landing training on knee kinematics and ground reaction forces in young adult beginner gymnasts. The study included three-dimensional motion analysis of knee flexion and measurement of ground reaction forces for landings from heights of 37 and 87cm. Of the 28 beginner gymnasts who participated in the study, 14 underwent five weeks of landing training, whereas 14 served as controls (no intervention). A significant pre-post difference (-11.2°) was observed only for the control group, and only regarding maximum knee flexion after landings from heights of 37cm. Although no significant effects were noted overall for the training group, systematic landing training seems effective for correcting those landings that deviated strongly from the target position prior to training initiation (37cm, r=-0.74; 8cm, r=-0.77; both with p< 0.01). Thus, while landing training appears to minimize peak forces at ground contact, our findings cannot be explained solely in terms of knee kinematics, warranting muscle activity analysis. Article visualizations:
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.