Abstract

Finely dispersed (CeO2)1−x(Nd2O3)x (x = 0.05, 0.10, 0.15, 0.20, 0.25) powders are synthesized via liquid-phase techniques based on the co-precipitation of hydroxides and co-crystallization of nitrates. The prepared powders are used to obtain ceramic materials comprising fluorite-like solid solutions with the coherent scattering region (CSR) of about 88 nm (upon annealing at 1300 °C) and open porosity in the range of 1–15%. The effect of the synthesis procedure and sintering additives (SiO2, ZnO) on physicochemical and electrophysical properties of the resulting ceramics is studied. The prepared materials are found to possess a predominantly ionic type of electric conductivity with ion transfer numbers ti = 0.96–0.71 in the temperature range of 300–700 °C. The conductivity in solid solutions follows a vacancy mechanism with σ700 °C = 0.48 × 10−2 S/cm. Physicochemical properties (density, open porosity, type and mechanism of electrical conductivity) of the obtained ceramic materials make them promising as solid oxide electrolytes for medium temperature fuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call