Abstract

Amorphous and low crystalline calcium phosphates are prospective candidates for bone implant manufacturing. Amorphous calcium phosphate (ACP) preparation technologies could be improved in terms of specific surface area (SSA) of obtained products. Current study is dedicated to the effect of synthesis temperature and Ca and P molar ratios (Ca/P) on SSA of ACP. Higher SSA can improve bioactivity of biomaterials. ACP was characterized by XRD, FT-IR, SEM and BET N2 adsorption techniques. Spherical nanoparticles (<45 nm in size) were obtained independently of initial Ca/P ratio and synthesis temperature. For the first time comparison of SSA was shown for ACP obtained at different temperatures (0 °C and 20 °C) and Ca/P molar ratios (1.5, 1.67 and 2.2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.