Abstract
An experimental strategy was developed to obtain mesoporous SiO2-ZrO2 mixed oxides via a sol–gel process, which involved the use of tetraethylorthosilicate (TEOS) and an inorganic Zr-containing salt. The effects of key process parameters on the properties of the materials were investigated, including the choice of Zr(IV) source (zirconium oxychloride or nitrate), the ZrO2 content and the synthesis pressure (i.e. ambient pressure or hydrothermal conditions). The resulting solids were dried, calcined at 500 °C, and characterized by nitrogen physisorption, pyridine chemisorption, 29Si Nuclear Magnetic Resonance and X-ray diffraction. The data revealed that mesoporous materials with very narrow pore diameter distribution were obtained when using the autoclave procedure from both zirconium nitrate and oxychloride salts. The surface areas and pore size distributions were a function of ZrO2 content. Differences in acidity, as determined by pyridine adsorption, were observed depending on the synthesis parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.