Abstract

Multiple facile synthetic strategies for all inorganic perovskite CsPbBr3 nanocrystals (NCs) have been established and developed, profiting from their excellent performance and great potential applied in the field of photonic and optoelectronic. Here, CsPbBr3 NCs were synthesized by both hot injection method (method 1) and conversion method (method 2), and the discrepancy of their photophysical properties is elucidated via the complementary studies between time-resolved photoluminescence (TRPL) and transient-absorption (TA) spectroscopy. We found that CsPbBr3 NCs prepared by conversion method exhibited lower PL quantum yield (QY), which was ascribed to the larger partition of the NCs being passivated from the quenchers from the deep trap states. On the other hand, we also observed different radiative recombination rates between two samples which should be due to various trapping/detrapping times prior to the radiative recombination of the charge carriers in two samples. These results provide better guidance for the development and improvement of synthesis methodology for perovskite NCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.