Abstract

Magnetic biochar is increasingly known as a multi-functional material and the appropriate synthesis method further increase its efficient applications. In this study, the effects of synthesis methods on the fabrication of Kans grass straw/biochar (KGS/KGB) with Fe3+/Fe2+ by chemical co-precipitation and subsequently pyrolyzing at 500 °C for 2 and 4 h were studied in details, and compared their As(III, V) adsorption potentials under different operating conditions. Magnetic biochars (MKGB3 and MKGB4) prepared from KGS revealed of superior Fe3O4 loading, higher As(III, V) adsorption efficiency and saturation magnetization (45.7 Am2 kg−1) than that of KGB (MKGB1 and MKGB2). Moreover, Thermogravimetric analysis (TGA) demonstrated three stages of decomposition and the MKGB3 and MKGB4 generated higher residual mass (>60%) at stage 3 (1000 °C) due to greater Fe3O4 composite in biochar matrix and turned to be thermally more stable. As(III) and As(V) adsorption equilibrium data well fitted in Langmuir model and followed the order: MKGB4 > MKGB3 > MKGB2 > MKGB1. The maximum As(III) and As(V) adsorption capacities were about 2.0 mg g−1 and 3.1 mg g−1, respectively. The data best fitted in pseudo-second-order (R2 > 0.99) rather than pseudo-first-order kinetics model indicating of more complex mechanism. The adsorption of As(III) and As(V) was found to decrease with increasing in ionic strength of competing ions and PO43− was found to strongly inhibit arsenic adsorption. Highest desorption was achieved at pH 13.5 using NaOH. This study suggests that selective adsorbent synthesis method could be useful to prepare effective adsorbent for toxic metals immobilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.