Abstract
A simple soft chemical method has been suggested for large-scale production of zinc oxide (ZnO) nanosheets at room temperature using two synthesis mediums: aqueous (H2O) and non-aqueous (C2H5OH). In H2O medium, nanosheets interwoven group wise in flower-like structures revealing the strong inter-hydrogen bonding among initially nucleated ZnO nanocrystals, whereas weak hydrogen bonding in C2H5OH medium leads to the formation of un-aggregated interwoven’ nanosheets. The growth of ZnO flower-like and interwoven nanosheets proceeded via anisotropic oriented attachment of ZnO nanocrystals. Obtained nanosheets were faceted, possessing large surface area, width hundreds of nanometers, and thickness in tens of nanometer, as characterized by scanning electron microscopy and transmission electron microscopy. These nanosheets show high sunlight photocatalytic activity toward the degradation of an organic pollutant ‘methylene blue dye.’ The enhancement in photodegradation efficiencies, interwoven sheets 99.94 %, and flower-like nanosheets 79.76 % for 120 min of irradiation is attributed to the surface oxygen vacancies narrowing the band gap as confirmed by photoluminescence spectra, faceted geometry, and large surface area of ZnO nanosheets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.