Abstract

Single emulsifiers have an effect on the stability of plant protein drinks, giving some improvement. Emulsifiers are more effective in maintaining emulsion stability when combined with polysaccharides such as xanthan gum. In this paper, we studied the food-grade emulsifier sucrose ester and measured the average particle size, polydispersity value, zeta potential, microrheological properties, microstructure and creaming index related to walnut protein emulsion by constructing a walnut protein emulsion simulation system. SDS-PAGE and low-field NMR were used to analyze the relative molecular masses of emulsions and the water distribution of emulsions, respectively, to further investigate the synergistic effects of sucrose esters and xanthan gum on the ease of emulsification and intrinsic mechanisms of different molecular weight proteins of walnut protein emulsions. The results indicate that the synergistic effect of sucrose esters and xanthan gum was to stabilize emulsions better than single emulsifiers. Xanthan gum and protein may form protein-polysaccharide complexes, as well as the hydrophobic interaction between sucrose ester and xanthan gum. The properties of xanthan gum can improve the stability of the emulsion by affecting the mechanical properties of walnut protein emulsion, and the combination of sucrose ester and xanthan gum can better stabilize large protein molecules. The results not only provide a theoretical basis for the stability of plant protein emulsion systems, but also provide technical support for the production and processing of large-molecule plant proteins into emulsions in this field for improving their stability, and also provide more possibilities for other types of emulsions. © 2023 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.