Abstract

During dietary salt deprivation, the sympathetic nervous system and the angiotensin-aldosterone system are stimulated. Both systems are thought to be essential for maximal salt conservation by the kidney. To study their relative contributions, we produced negative salt balance in rats by intraperitoneal injection of furosemide, followed by a low-salt diet (<0.008% NaCl). In a 1-wk metabolic study, the animals were unable to replace the drug-induced salt deficit. Six groups of rats were studied. A control group established baseline function, a second group of 6-hydroxydopamine (OHDA) rats were treated with OHDA to destroy sympathetic efferent nerve terminals, and a third group (losartan) were treated with the angiotensin-receptor antagonist losartan. The influence of catecholamines and aldosterone released from the adrenal gland was studied in a further three groups. Rats were sham-adrenalectomized (sham), subjected to bilateral adrenal enucleation (Enuc) to eliminate catecholamine secretion, or were bilaterally adrenalectomized (Adx), eliminating both catecholamine and corticosteroid release. Dexamethasone was used as glucocorticoid replacement in this group. Steady-state urinary salt excretion was not different between control and OHDA rats. The losartan group showed significantly increased sodium but not chloride excretion. Surprisingly, there were no differences in salt excretion among sham, Enuc, and Adx groups. We conclude that, during a state of chronic salt depletion, renal mechanism(s) independent of neuronally released or systemically circulating catecholamines or of adrenally released aldosterone can ensure maximal salt conservation by the kidney. Although our data show that losartan increased sodium excretion under these conditions, we suggest that the losartan effect can be explained by a reduction of bicarbonate reabsorption, obligating simultaneous excretion of the cation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.