Abstract

A single-layer graphene metamaterial consisting of a horizontal graphene strip, four vertical graphene strips, and two graphene rings is proposed to realize tunable multi-plasma-induced transparency (MPIT) by the coupled mode theory and the finite-difference time-domain method. A switch with three modulation modes is realized by dynamically adjusting the Fermi level of graphene. Moreover, the effect of symmetry breaking on MPIT is investigated by controlling the geometric parameters of graphene metamaterials. Triple-PIT, dual-PIT, single-PIT can be transformed into each other. The proposed structure and results provide guidance for applications such as designing photoelectric switches and modulators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.