Abstract

AbstractBuoy observations from a 1999 Gulf of Mexico field program (GOM99) are used to investigate the relationships among friction velocity u*, wind speed U, and amount of swell present. A U–u*sea parameterization is developed for the case of pure wind sea (denoted by u*sea), which is linear in U over the range of available winds (2–16 m s−1). The curve shows no sign of an inflection point near 7–8 m s−1 as suggested in a 2012 paper by Andreas et al. on the basis of a transition from smooth to rough flow. When observations containing more than minimal swell energy are included, a different U–u* equation for U < 8 m s−1 is found, which would intersect the pure wind-sea curve about 7–8 m s−1. These two relationships yield a bilinear curve similar to Andreas et al. with an apparent inflection near 7–8 m s−1. The absence of the inflection in the GOM99 experiment pure wind-sea curve and the similarity of the GOM99 swell-dominated low wind speed to Andreas et al.’s low wind speed relationship suggest that the inflection may be due to the effect of swell and not a flow transition. Swell heights in the range of only 25–50 cm may be sufficient to impact stress at low wind speeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.