Abstract

Effective control of the cohesive force between hydrate particles is the key to prevent their aggregation, which then causes pipeline blockage. The hydrophilic–lipophilic balance (HLB) value of surfactants was proposed as an important parameter for the evaluation and design of hydrate anti-agglomerants. A microscopic manipulation method was used to measure the cohesive forces between cyclopentane hydrate particles in the presence of Tween and Span series surfactants with different HLB values; moreover, the measured cohesive force was compared with the results of calculations based on the liquid bridge force model. Combined with the surface morphology and wettability of the hydrate particles, we analyzed the mechanism by which surfactants with different HLB values influence the cohesion between hydrate particles. The results show that for both Tween (hydrophilic, HLB > 10) and Span (hydrophobic, HLB < 10) surfactants, the cohesive force between cyclopentane hydrate particles decreased with decreasing HLB. The experimental results were in good agreement with the results of calculations based on the liquid bridge force model. The cohesive force between hydrate particles increased with increasing concentration of Tween surfactants, while in the case of the Span series, the cohesive force decreased with increasing surfactant concentration. In the formation process of cyclopentane hydrate particles, the aggregation of low-HLB surfactant molecules at the oil–water or gas–water interface increases the surface roughness and hydrophobicity of the hydrate particles and inhibits the formation of liquid bridges between particles, thus reducing the cohesion between particles. Therefore, the hydrate aggregation and the associated blockage risks can be reduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.