Abstract

Chalcopyrite is a primary source of copper in nature. However, with the increasing need to process low-grade and complex chalcopyrite ores, overly stable froth is becoming more and more common and poses operational and safety challenges. No reliable strategy has been developed to address the issue. As a new initiative, this study investigated three different structured surfactants, sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), and pentadecafluorooctanoic acid (PFOA), which vary in hydrophobic group, aiming to modify the surfaces of ultrafine chalcopyrite particles and adjust the interfacial tension at the gas-liquid interface to eliminate stable ultrafine chalcopyrite froth. The fundamental hypothesis was that an ideal surfactant structure could adjust the particle surface wettability and interfacial tension to eliminate overly stable froth. Based on contact angle measurements and interfacial tension measurements using a Theta Flow tensiometer by the pendant drop method and the sessile drop method, it was demonstrated that the contact angle played a dominant role in defoaming, while the reduction of gas-liquid interfacial tension had an adverse effect. Additionally, defoaming tests indicated that SDBS had lower defoaming effectiveness than SDS at low surfactant concentrations due to the steric hindrance in its structure, whereas the addition of SDBS could achieve a froth reduction efficiency as high as 93.75% at higher surfactant concentrations due to its stronger hydrophobicity and adsorption capacity to chalcopyrite particles, which could reduce the contact angle from 70 to 37.62°. However, PFOA exhibited lower defoaming effectiveness than both SDS and SDBS due to its lipophobic fluorocarbon tail of PFOA and weaker adsorption capacity to chalcopyrite particles, making it unsuitable for eliminating stable ultrafine chalcopyrite froth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.