Abstract

The effect of mixed cyclodextrin-surfactant systems on the ground and excited state proton transfer reactions of 4-methyl-2,6-diformylphenol (MFOH) in aqueous solution has been investigated by steady state and time-resolved fluorescence spectroscopy. It has been found that micellar media perturbs the solvation of MFOH and facilitates nanocaging. In the presence of micelle, MFOH preferentially resides in the interfacial region. Depending on the local pH due to compartmentalization of reaction media, normal or anionic form of MFOH dominates. Encapsulation of the probe within the cyclodextrin nanocavity enhances the shorter lifetime component of MFOH unexpectedly, which has been explained on the basis of reduced solvation and reduced dipolar effect due to confinement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.