Abstract

To attain a better understanding of the effects of surfactants on the metabolic kinetics of hydrophobic organic compounds, the biodegradation of phenanthrene by Citrobacter sp. SA01 was investigated in a batch experiment containing Tween 80, sodium dodecyl benzene sulfonate and liquid mineral salt medium. The Monod model was modified to effectively describe the partition, phenanthrene biodegradation and biopolymer production. The results showed that Tween 80 and sodium dodecyl benzene sulfonate (each at 50mg/L) enhanced phenanthrene metabolism and poly-β-hydroxybutyrate production as indicated by the increasing amounts of intermediates (by 17.2% to 47.9%), and percentages of poly-β-hydroxybutyrate (by 107.3% and 33.1%) within the cell dry weight when compared to their absence. The modified Monod model was capable of predicting microbial growth, phenanthrene depletion and biopolymer production. Furthermore, the Monod kinetic coefficients were largely determined by the surfactant-enhanced partition, suggesting that partitioning is a critical process in surfactant-enhanced bioremediation of hydrophobic organic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call