Abstract

This paper presents an analysis of the structure and physicochemical properties of coatings based on an organofunctional silane (VTMS), a conductive polymer (PEDOT), and a surfactant (polyoxyethylene glycol monolauryl ether BRIJ).The coatings were deposited on X20Cr13 stainless steel and glassy carbon specimens using sol-gel immersion. The obtained coatings were characterised in terms of topography, microstructure, roughness, adhesion to the steel substrate, thickness, and corrosion resistance. Corrosion tests were conducted in sulfate environments with pH = 2 without or with the addition of Cl- ions.The use of different surfactant concentrations in the modifying solution is intended to improve the deposition efficiency and increase the degree of dispersion of silane and conducting polymer.The tested coatings were found to slow down the corrosion of the steel substrate, thus effectively protecting it from this phenomenon. The use of a surfactant compound is intended to increase the degree of dispersion of silane and polymer in the modifying solution to improve deposition efficiency.Test carried out in corrosive media have shown that the coatings proposed in the above work, based on VTMS silane, PEDOT polymer and BRIJ surfactant, significantly increase the corrosion resistance of the tested materials, which confirms their effectiveness and possibility of application in various industries.The novelty of this paper is the use of silane (VTMS), polymer (PEDOT) and surfactant (BRIJ) as components of the anticorrosion coating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call