Abstract

Filter aids are widely used in low-rank coal (LRC) slime filtration. However, their impact on filter cake characteristics is still unclear. In this paper, the effect of anionic polyacrylamide (APAM) and cetyltrimethylammonium bromide (CTAB) on the filter cake characteristics was investigated using Darcy’s filtration theory and low-field nuclear magnetic resonance (L-F NMR). The slime and filtrate property change was determined by contact angle, XPS, FBRM, Zeta potential and surface tension measurements. The results showed that the filter aid improved slime filtration rate and reduced filter cake moisture. The filter aid effect of APAM was better than that of CTAB. CTAB significantly improved the slime surface hydrophobicity with the contact angle increasing to 90.5°, and reduced the filtrate surface tension to 35.26 mN/m. However, APAM decreased the absolute value of slime Zeta potential by 7.48 mV, and increased the slime floc size by about 7–9 µm. Both CTAB and APAM can reduce the filtration resistance, but the effect of APAM was better than that of CTAB, because APAM greatly improved the filter cake permeability. L-F NMR results showed that CTAB increased the filter cake porosity only by 2.65%, while APAM significantly improved the filter cake porosity by 11.65%, especially the mesopore porosity of cake, which increased by 10.48%. It was indicated that CTAB reduced the filtration resistance by “lubricating” the pore wall of the filter cake, while APAM improved the filter cake porosity and permeability by weakening the electrostatic repulsion between slime particles and promoting floc formation through aggregation effect. This research provided a new perspective to reveal the mechanism of LRC slime filtration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call