Abstract

Biomaterials interact with the biological environment at their surface, making accurate biophysical characterization of the surface crucially important for understanding subsequent biological effects. In this study, the surface of polystyrene (PS) was systematically altered in order to determine the effect of plasma treatment and surface roughness on cell adhesion and spreading. Surfaces with water contact angle from hydrophilic (12°) to superhydrophobic (155°) were obtained through a combination of modifying surface roughness (R (a)), the deposition of siloxane coatings and the fluorination of the PS surface. R (a) values in the range of 19-2365 nm were obtained by grinding the PS surface. The nanometer-thick siloxane coatings were deposited using an atmospheric pressure plasma system, while the fluorination of the PS was carried out using a low-pressure radio frequency (RF) plasma. The siloxane coatings were obtained using a liquid poly(dimethylsiloxane) precursor that was nebulized into helium or helium/oxygen plasmas. Water contact angles in the range of 12-122° were obtained with these coatings. Cell adhesion studies were carried out using human MG63 osteosarcoma cells. It was observed that higher polymer surface roughness enhanced cell adhesion, but had a negative effect on cell spreading. Optimum cell adhesion was observed at ∼64° for the siloxane coatings, with a decrease in adhesion observed for the more hydrophilic and hydrophobic coatings. This decrease in cell adhesion with an increase in hydrophobicity was also observed for the fluorinated PS surfaces with water contact angles in the range of 110-155°.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.