Abstract

AbstractThe hyporheic zone, where surface water (SW) and groundwater (GW) interact in shallow sediments beneath rivers, is uniquely reactive and attenuates pollutants. Mixing of reactants from SW and GW enables mixing‐dependent (MD) reactions, which may be the last opportunity for GW contaminants to react before entering SW. Yet little is known about hyporheic MD reactions, particularly how they respond to daily or seasonal SW fluctuations or sediment heterogeneity. We used MODFLOW and SEAM3D to simulate non‐mixing‐dependent (NMD) aerobic respiration and MD denitrification in a riverbed dune with nitrate from SW and dissolved organic carbon from GW. We varied SW heads and heterogeneity of sediment hydraulic conductivity. For longer‐term fluctuations (i.e., seasons), increasing SW depth from 0.1 to 1.0 m increased NMD aerobic respiration by 270% and MD denitrification by 78% in homogeneous sediment. MD reactions thus were controlled by mixing zone length or size and would be stronger when SW stage is elevated, for example, during wintertime. Adding sediment heterogeneity to the long‐term scenarios, particularly by increasing hydraulic conductivity correlation length, increased flow focusing and consequently increased MD denitrification by 20–30%. By contrast, the net effect of daily SW fluctuations on MD denitrification in homogeneous sediment was minor. In sum, SW fluctuations are an important control on hyporheic MD reactions, primarily by controlling mixing zone length. The hyporheic zone may attenuate nitrate in upwelling GW plumes, but temporal fluctuations may be considerable as quantified above.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.