Abstract

The high surface area W-doped spherical silica (SSP) catalysts were prepared with different sequences of W and Si addition (W–Si(Alt), Si1–W2, and W1–Si2) by the sol–gel method with CTAB as a structure directing agent and compared with the impregnated one (W/SSP). All the catalysts exhibited high specific surface area (∼ 1100 m2 g−1) with a closely perfect spherical shape. The presence of surface/sub-surface tungstate W5+ species, crystalline bulk WO3, and tetrahedral tungsten oxide species on the prepared catalysts was investigated by means of X-ray photoelectron spectroscopy depth profile analysis, X-ray diffraction, and Raman spectroscopy. Without in situ reduction by the reactants/products, tungstate W5+ species was found on the top surface of the as-prepared W–Si(Alt) whereas for the Si1–W2, W/SSP, and W1–Si2, the W5+ appeared only on the sub-surface of the catalysts after 5 and 15 s Ar+ etching. The abundance of surface W5+ species is suggested to facilitate the establishment of the active tungsten carbenes and was correlated well to the catalytic activity in propene metathesis. The surface W5+-activity relationship of the WO3-based metathesis catalysts is useful especially when the catalyst activity did not depend solely on the amount of active tetrahedral coordinated tungsten oxides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call