Abstract

The structural properties of hair are largely determined by the state of the surface. Advanced imaging modes of atomic force microscopy, where the surface mechanics can be correlated with surface topography, have been used to spatially map variations in hair surfaces following chemical and mechanical treatments. Through analysis of multilayered data obtained in this way, we show that the processes of bleaching and combing of hair not only alter the surface roughness, but also alter the mechanical stiffness, adhesion properties, and surface potential of hair, in terms of the mean values and their distributions. These treatments are shown to have a significant effect on the nanoscale surface properties, consistent with what has previously been observed at the macroscopic fiber-level scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.