Abstract

This laboratory study compared the repaired microtensile bond strengths of aged silorane resin composite using different surface treatments and either silorane or methacrylate resin composite. One hundred eight silorane resin composite blocks (Filtek LS) were fabricated and aged by thermocycling between 8°C and 48°C (5000 cycles). A control (solid resin composite) and four surface treatment groups (no treatment, acid treatment, aluminum oxide sandblasting, and diamond bur abrasion) were tested (N=12 blocks, 108 beams/group). Each treatment group was randomly divided in half and repaired with either silorane resin composite (LS adhesive) or methacrylate resin composite (Filtek Z250/Single Bond Plus). After 24 hours in 37°C distilled water, microtensile bond strength testing was performed using a non-trimming technique. Surface topography after surface treatment was analyzed using scanning electron microscopy (SEM). Failure mode was examined using optical microscopy (50×). Weibull-distribution survival analysis revealed that aluminum oxide sandblasting followed by silorane or methacrylate resin composite and acid treatment with methacrylate resin composite provided insignificant differences from the control (p>0.05). All other groups were significantly lower than the control. Failure was primarily adhesive in all groups. Aluminum oxide sandblasting produced microtensile bond strength not different from the cohesive strength of silorane resin composite. After aluminum oxide sandblasting, aged silorane resin composite can be repaired with either silorane resin composite with LS system adhesive or methacrylate resin composite with methacrylate dental adhesive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.