Abstract

The objective of this study was to compare the shear bond strength to zirconium oxide ceramic of adhesive-phosphate-monomer-containing (APM) and non-APM-containing (nAPM) luting cements after different surface treatments. nAPM cements: Bifix QM, Dual Cement, Duo Cement Plus, Multilink Automix, ParaCem Universal DC, PermaCem Smartmix, RelyX ARC, Variolink Ultra, and Variolink II; APM cements: Panavia EX, Panavia F2.0, and RelyX UniCem. Groups of ten test specimens were each prepared by layering luting cement, using cylindrical Teflon molds, onto differently treated zirconium dioxide discs. The surface treatments were airborne-particle abrasion with 110 mum alumina particles, silica coating (SC) using 30 mum alumina particles modified by silica (Rocatec System) or SC and silanization. Bifix QM and Multilink Automix were used in combination with an additional bonding/priming agent recommended by the manufacturers. After 48 h of water storage, each specimen was subjected to a shear test. Combinations involving APM-containing cements (14.41-23.88 MPa) generally exhibited higher shear bond strength than those without APM (4.29-17.34 MPa). Exceptions were Bifix QM (14.20-25.11 MPa) and Multilink Automix (19.14-23.09 MPa) in combination with system-specific silane or priming agent, which were on the upper end of shear bond strength values. With the use of the Rocatec system, a partially significant increase in shear bond strength could be achieved in nAPM cement. Modified surface treatment modalities increased the bond strength to zirconium oxide, although the most important factor in achieving a strong bond was the selection of a suitable cement. System-specific priming or bonding agents lead to further improvement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call