Abstract

This paper studies the influence of surface elasticity on crack growth for a nanoscale crack advance. A crack is modeled as a double cantilever beam with consideration of surface stress. Using the Euler-Bernoulli beam theory incorporating with surface effects, a governing equation of static bending is derived and bending solution of a cantilever nanowire is obtained for a concentrated force at the free end. Based on the viewpoint of energy balance, the elastic strain energy is given and energy release rate is determined. The influences of the Surface stress and the surface elasticity on crack growth are discussed. Obtained results indicate that consideration of the surface effects decreases stress intensity factors or energy release rates. The residual surface tension impedes propagation of a nanoscale crack and apparent fracture toughness of nanoscale materials is effectively enhanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.