Abstract
The 2D problem on an arbitrary nanohole in an infinite elastic body under remote loading is solved. It is assumed that complementary surface stress is acting at the boundary of the hole. Corresponding boundary conditions are formulated according to the generalized Young-Laplace equations. The Gurtin–Murdoch surface elasticity model is applied to take into account the surface stress effect. Based on Goursat–Kolosov complex potentials and Muskhelishvili's technique and using conformal mapping of the outside of the hole on the outside of the circle, the solution of the problem is reduced to a singular integro-differential equation in an unknown surface stress. For a nearly circular hole, the boundary perturbation method is used that leads to successive solutions of hypersingular integral equations. In the case of elliptical and triangular holes, these equations are solved for the first-order approximation and corresponding expressions for stresses are derived in an explicit form. The influence of the surface stress and the dimension of the nanohole on the stress concentration are analyzed. It has been ascertained that the effect of the surface stress is the most significant when radius of the basic circular hole is in the range from 1 to 10nm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.