Abstract

A new continuum model is developed to study the influence of surface stress on the behaviors of piezoelectric nanobeams. Different from existing piezoelectric surface models which only consider the surface properties, the proposed model takes surfaceinduced initial fields into consideration. Due to the fact that the surface-induced initial fields are totally different under various boundary conditions, two kinds of beams, the doubly-clamped beam and the cantilever beam, are analyzed. Furthermore, boundary conditions can affect not only the initial state of the piezoelectric nanobeam but also the forms of the governing equations. Based on the Euler-Bernoulli beam theory, the nonlinear Green-Lagrangian strain-displacement relationship is applied. In addition, the surface area change is also considered in the proposed model. The governing equations of the doubly-clamped and cantilever beams are derived by the energy variation principle. Compared with existing Young-Laplace models, the proposed model for the doubly-clamped beam is similar to the Young-Laplace models. However, the governing equation of the cantilever beam derived by the proposed model is very different from that derived by the Young-Laplace models. The behaviors of piezoelectric nanobeams predicted by these two models also have significant discrepancies, which is owing to the surface-induced initial fields in the bulk beam.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call