Abstract
We have developed a polymer electrolyte membrane (PEM) material using polymer-coated silica nanoparticles (NPs) by the reversible addition-fragmentation chain-transfer polymerization with particles (RAFT PwP) method. In this paper, we controlled the number density of surface silanol groups on the silica NPs that not only maintain the structure of the surface adsorbed polymers by RAFT PwP but also form fast proton-conducting interface to study the silanol density effect on proton conductivity. The number of surface silanol groups was successfully increased by NaOH surface treatment and decreased by heat treatment. Then, we clarified that silanol-rich silica NPs with a polyacrylic acid and polystyrene block copolymer (PAA-b-PS) applied by RAFT PwP exhibit larger proton conductivity. This result implies that hydrophilicity of the filler is one of the important factors in the design of filler-functionalized PEM with high proton conductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.