Abstract

AbstractAs a new form of energy with substantial potential, natural gas hydrate will play a crucial strategic role in the future due to its vast reserves and broad industrial application prospects. To better comprehend the nucleation and growth mechanism of clathrate hydrate, an enhanced thermodynamic model was proposed based on the wall roughness model and nucleation theory. In general, we discovered that the nucleation of hydrate on a smooth wall surface conforms to the conclusion of classical nucleation theory. However, curvature and surface roughness are frequently characterized by hydrophilicity's inhibition of hydrate and hydrophobicity's enhancement. The specific situation is more complex and requires specific analysis and discussion. Nonetheless, this also explains the uneven distribution of hydrate nucleation induction time. Our research reveals a fundamental method for designing or manipulating the heterogeneous nucleation of hydrates. We foresee promising applications in hydrate‐related technologies based on the fractal structure of the substrate's surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.