Abstract

Surface roughness has been reported as one of the factors affecting microbial attachment and removal. Seed surfaces are complex, and different seed varieties have different surface topographies. As a result, a sanitizer effective in eliminating pathogenic bacteria on one seed may not be as effective when applied to another seed. The objectives of this research were (i) to investigate the efficacy of malic acid and thiamine dilaurylsulfate (TDS) combined treatments for inactivation of E. coli O157:H7 strain 87-23 on alfalfa, broccoli, and radish seeds, (ii) to quantify surface roughness of the seeds, and (iii) to determine the correlation between microbial removal and surface roughness. The surface roughness of each seed type was measured by confocal laser scanning microscopy (CLSM) and surface profilometry. Surface roughness (Ra) values of the seeds were then calculated from CLSM data. Seeds inoculated with E. coli O157:H7 87-23 were washed for 20 min in malic acid and TDS solutions and rinsed for 10 min in tap water. Radish seeds had the highest Ra values, followed by broccoli and alfalfa seeds. A combination of 10% malic acid and 1% TDS was more effective than 20,000 ppm of Ca(OCl)(2) for inactivation of E. coli O157:H7 87-23 on broccoli seeds, while the inactivation on radish and alfalfa seeds was not significantly different compared with the 20,000-ppm Ca(OCl)(2) wash. Overall, a negative correlation existed between the seeds' Ra values and microbial removal. Different seeds had different surface roughness, contributing to discrepancies in the ability of the sanitizers to eliminate E. coli O157:H7 87-23 on the seeds. Therefore, the effectiveness of one sanitizer on one seed type should not be translated to all seed varieties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call